An Elegant Method for Incorporating the Wellbore
Storage Effect in the Laplace Domain

There is an interesting technique for incorporating the wellbore storage effect into the
constant-rate analytical solution. This is one of my favorite topics in pressure transient
analysis.

If we have a constant (sandface) rate solution p,p.(tp) (dimensionless pressure), which
may or may not include skin effect, we can derive an analytical solution for a variable-rate
problem by applying the principle of superposition.

First, we discretize the sand face rate:

n

1
PwbD X 5 Z(qsf,i — Qsfi—1)Pwbe (tD — tDji—1)

i=1
where p,,p is the dimensionless pressure that accounts for wellbore storage, ¢ is the (constant)
surface rate, and ¢sr is the sand face rate. Here, the subscript 7 denotes denotes discretized
time steps.

We define the dimensionless rate as qp = @, so the expression becomes:
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If we take the limit n — oo (divide the interval so that the gp,; —gp -1 becomes infinites-
imaly small),
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This is a convolution integral. Therefore, in the Laplace domain:

L[pwp] = sL[gp] £ [pwp] (1)

where s is Laplace variable.
From the definition of the wellbore storage effect:
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Take the Laplace transform:
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Rearranging:

Llqp) = é — sCpL [puwp] (2)

Substituting Equation 2 into Equation 1, we eliminate £ [¢p]:
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This is a very interesting and elegant result. It shows that if we have the constant-rate
solution, we can modify it to account for wellbore storage under a variable-rate condition.
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