
Why Radians

When I first learned about radians in high school, I wondered why angles are defined in
such a strange way.

At that time, I was taught that the arc length can be expressed as rθ (where r is the
radius and θ is the angle in radians). I didn’t think this was very meaningful.

However, when I learned about differentiation, I finally understood the purpose of in-
troducing radians. What I will explain below may be something many people are already
familiar with, but I believe it is a point that deserves more emphasis when we teach what
radians are really for.

Let x be a positive angle in degrees. (The same discussion applies if x is negative.)
Now, consider the following arc and the two triangles shown below:
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The arc length lies between the heights of the two triangles:
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Dividing all sides by sinx, we obtain:
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Taking the reciprocal:
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Now, consider the derivative of sinx:
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As you can see, we would need to multiply by
π

180
every time we take a derivative. This

is quite cumbersome.
But if we use radians instead:

lim
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So we no longer need to multiply by
π

180
.

This is a more convincing reason to introduce radians than simply saying they express
arc length.
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