Divergence and Curl

There are several forms of the difinition of divergence and curl. One of them is using the
integral form.

Definition 1 Divergence. The divergence of a vector field v is defined as
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where 02 is the closed surface and the volume inside OS) is V

Definition 2 Curl. The curl of a vector field v is defined as
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where 1 is a unit vector in an arbitrary direction, S is an area of plane perpendicular to 1

and closed by curve C'

Theorem Gauss Divergence Theorem.
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Proof. First, we divide the region 2 into n regions. Each region is denoted as Q;(i =
1,2,--+ ,n). We can write the RHS of the theorem as follows.

This is because the surface integral on the boundary between (2; and (2; cancels out due to

the oposite direction of dS. Let V; be the volume of the region €2;. In addition, we define
|A| = max{V;;1 < i < n}. We can increase the number of division so that |A| becomes less



than any positive value. Therefore,
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Theorem Stokes’ Theorem.
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Proof. First, we divide the surface I' into n surfaces. Each surface is denoted as I';(i =
1,2,-+-,n), and the closed loop around I'; is C; We can write the RHS of the theorem as

follows. .
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This is because the integral on the boundary between I'; and I'; cancels out due to the
opposite direction of the integral. Let S; be the are of the surface I';. In addition, we define
|A| = max{S;;1 <7 <n}. We can increase the number of division so that |A| becomes less
than any positive value. Therefore,
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We can derive the divergence in Cartesian coordinate by considering the rectangular
prism shown in Figure 1.
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Figure 1: Rectangular prism

Using the Gauss divergence theorem,
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The above equation has to hold at any region ). Therefore,
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The x component of the curl of ¥ is
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Similarly, we can compute the y component and z component, and we can obtain
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Theorem Green’s Theorem.
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where I' € R? which is closed by a contour C

Proof. Let v be defined as follows.
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Using the Stokes’ theorem,
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