Cauchy’s Integral Formula

Theorem Cauchy’s Integral Formula.

If a complex-valued function f : C — C is analytic at any point in a domain {2 closed by
the contour C,
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Applying the Cauchy’s Integral Theorem to the integral along the contour shown in Figure

L,

Proof. Since f is an analytic function in a domain 2, is analytic except z = 2.
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where —(C" is the curve C’ traversed in the oposite direction. Thus,
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Therefore, we can use the smaller contour to evaluate the integral. Let C’ be the circle
whose radius is r centered at zy. As mentioned earlier, the integral does not change by r as
long as C” is in the C. Then,
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Since f is an analytic function, it is continuous at z = zy. Hence, for any positive real value
g, there exists 0 such that
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Figure 1: Contour for integration

Thus,
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The above indicates that there is 7(> 0) which makes the absolute value of the difference
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between f(z + 7€) df and f(20) df smaller than any positive real number.
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Additionally, due to the fact that / f(zo + 7€) df does not change by r (Cauchy’s
0
integral theorem), both integral must be the same. Hence,
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Thus,
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z = f(20)



